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Goal

(I) The goal of this very technical lecture is to prove that
L2
cusp(Γ\G ) has a discrete decomposition for any lattice Γ in

G = SL2(R), and that cuspidal automorphic forms are
rapidly decreasing near cusps.

(II) This requires a very careful study of growth conditions on
Γ\G , and the key ingredient is finding reasonable
fundamental domains, or approximations of such things, for
the action of Γ on H .
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Fundamental domains

(I) If a group G acts on a topological space X , a fundamental
domain for G acting on X is an open subset Ω ⊂ X such
that X = ∪g∈Gg .Ω and the various translates g .Ω are
pairwise disjoint. The standard example is the following
classical result (cf. any book on modular forms for the proof)

Theorem (Gauss) The set
F = {z ∈ C| |z | > 1, |Re(z)| < 1/2} is a fundamental
domain for the action of SL2(Z) on H .

One easily checks that F has finite (hyperbolic) area, and
this implies that SL2(Z) is indeed a lattice in G (something
we never really checked before!).



Fundamental domains

(I) As an application, let’s consider a finite index subgroup Γ in
SL2(Z) and f ∈ Mk(Γ). Then an immediate calculation
shows that

ϕf : H → R, z → |f (z)|yk/2

is Γ-invariant, more precisely ϕf |kg (z) = f (g .z) for g ∈ G .
We claim that ϕf is bounded when f ∈ Sk(Γ).

(II) Indeed, write SL2(Z) =
∐k

i=1 Γγi and D = F , so that
H = ∪i ∪γ∈Γ γγiD. Thus it suffices to check that ϕf |kγi is
bounded on D for all i .



Fundamental domains

(I) As an application, let’s consider a finite index subgroup Γ in
SL2(Z) and f ∈ Mk(Γ). Then an immediate calculation
shows that

ϕf : H → R, z → |f (z)|yk/2

is Γ-invariant, more precisely ϕf |kg (z) = f (g .z) for g ∈ G .
We claim that ϕf is bounded when f ∈ Sk(Γ).

(II) Indeed, write SL2(Z) =
∐k

i=1 Γγi and D = F , so that
H = ∪i ∪γ∈Γ γγiD. Thus it suffices to check that ϕf |kγi is
bounded on D for all i .



Fundamental domains

(I) But fi := f |kγi ∈ Sk(γ−1
i Γγi ) and the q-expansion at ∞

shows that fi (x + iy) = O(e−cy ) for some c > 0, as y →∞,
uniformly in z = x + iy ∈ D. Thus ϕfi (z) tends to 0 as
z →∞ in D, so we are done.

Theorem (Hecke’s bound) Let f (z) =
∑

n≥0 ane
2iπnz/h be

the q-expansion at ∞ of f ∈ Sk(Γ). Then an = O(nk/2),
more precisely ∑

n≤x
|an|2 = O(xk), x →∞.



Fundamental domains
(I) The proof is very simple: write |ϕf (z)| ≤ C for all z , so
|f (x + iy)| ≤ Cy−k/2. Plancherel’s formula yields (for a
suitable constant c)∑

n≥1

|an|2e−4πny/h = c

∫ h

0
|f (x + iy)|2dx ≤ c ′y−k .

Take y = 1/N to get
∑

n≤N |an|2 ≤ c ′′Nk .

Theorem We have S0(Γ) = 0 and M0(Γ) = C.

(II) If we use that X (Γ) is a compact Riemann surface, this is
clear. Without this input, note that for f ∈ S0(Γ) the
function ϕf = |f | is bounded and tends to 0 at ∞, thus has
a maximum on F . By the maximum principle f is constant
and since f vanishes at ∞, f = 0. Actually the same
argument works even if we only assume that f ∈ M0(Γ).
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Siegel sets

(I) Instead of working with fundamental domains, for
automorphic needs Siegel sets are better behaved. These
control the geometry at the cusps of X (Γ).

(II) Pick z ∈ ∂H and let P = ±APNP = Gz be the associated
parabolic of G . The action of AP on Lie(NP) defines a
character α = αP : AP → R>0, thus aYa−1 = α(a)Y for
a ∈ AP and Y ∈ Lie(NP). If P = B is the standard Borel

subgroup, then α(

(
t 0
0 t−1

)
) = t2. If t > 0, let

AP,t = {a ∈ AP |αP(a) > t}.

(III) A Siegel set at P is a set of the form

Σ = ωAP,tK ⊂ G

for some t > 0 and some compact set ω ⊂ NP . The image
of Σ in H ' G/K is called a Siegel set at z .
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Siegel sets

(I) Let us make a few useful remarks. First, since
NP × AP × K → G is a homeomorphism, any compact
subset of G is contained in some Siegel set at P.

(II) Next, if z =∞ and ω =

(
1 [−c , c]
0 1

)
with c > 0, the

associated Siegel set at z is

Σ = {x + iy ∈H | |x | ≤ c , y > t}.

(III) If k ∈ K and Σ is a Siegel set for P, with fixed point
z ∈ ∂H then k .Σ is a Siegel set for kPk−1, with fixed point
k .z , so we can always reduce to the previous situation.



Siegel sets

(I) Let us make a few useful remarks. First, since
NP × AP × K → G is a homeomorphism, any compact
subset of G is contained in some Siegel set at P.

(II) Next, if z =∞ and ω =

(
1 [−c , c]
0 1

)
with c > 0, the

associated Siegel set at z is

Σ = {x + iy ∈H | |x | ≤ c , y > t}.

(III) If k ∈ K and Σ is a Siegel set for P, with fixed point
z ∈ ∂H then k .Σ is a Siegel set for kPk−1, with fixed point
k .z , so we can always reduce to the previous situation.



Siegel sets

(I) Let us make a few useful remarks. First, since
NP × AP × K → G is a homeomorphism, any compact
subset of G is contained in some Siegel set at P.

(II) Next, if z =∞ and ω =

(
1 [−c , c]
0 1

)
with c > 0, the

associated Siegel set at z is

Σ = {x + iy ∈H | |x | ≤ c , y > t}.

(III) If k ∈ K and Σ is a Siegel set for P, with fixed point
z ∈ ∂H then k .Σ is a Siegel set for kPk−1, with fixed point
k .z , so we can always reduce to the previous situation.



Siegel sets

(I) Let z ∈ C (Γ) and π : H ∪ C (Γ)→ X (Γ) the natural
projection. Using the previous remarks, one easily checks
that sets of the form π({z} ∪ Σ) form a basis of
neighborhoods of π(z) in X (Γ), when Σ varies among Siegel
sets at z .

(II) Since Γ is a lattice in G , by Siegel’s theorem Γ\CP(Γ) is
finite. Choose a set of representatives P1, ...,Pl for this set.

Theorem There are Siegel sets Σi at Pi such that

G = Γ•(∪li=1Σi ).

(III) The proof follows easily from the compactness of X (Γ) and
the previous geometric remarks.
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Siegel sets

(I) We will constantly use the following simple but useful result.
Fix a Siegel set Σ at some parabolic P, and write
x = n(x)a(x)k(x) with respect to the Iwasawa
decomposition NP × AP × K ' G .

Lemma As x varies in Σ, a(x)−1x stays in a compact set
and ||x ||2 behaves like αP(a(x)), i.e. there are constants
c1, c2 > 0 such that for all x ∈ Σ

c1 ≤
||x ||2

αP(a(x))
≤ c2.

(II) By conjugating, WLOG P = B, so that α(

(
t 0
0 t−1

)
) = t2.



Siegel sets

(I) Write a(x) =

(
tx 0
0 t−1

x

)
. Then

a(x)−1n(x)a(x) =

(
1 ux t

−2
x

0 1

)
if nx =

(
1 ux
0 1

)
.

(II) Since ux stays in a compact and tx is bounded from below
on Σ, this gives the first part. For the second, by the first
part ||x || behaves like ||a(x)||, so it suffices to check that
||a(x)|| behaves like tx , which again follows from the fact
that tx is bounded from below on Σ by definition.
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Siegel sets
(I) If P ∈ CP(Γ) and Σ is a Siegel set at P, we say that

f : Σ→ C is moderate growth(resp rapidly decreasing) if
there exists d ≥ 1 (resp. for all integers d) such that
supx∈Σ α(a(x))−d |f (x)| <∞. By the previous lemma, one
could replace α(a(x)) with ||x || and get equivalent
definitions.

(II) The following result reduces many global problems to
problems at individual cusps of X (Γ). The proof is slightly
tricky.

Theorem Let Σ1, ...,Σl be Siegel sets such that
Γ(∪Σi ) = G . A function f on Γ\G has moderate growth on
G if and only if f has moderate growth on each Σi .

(III) The only delicate part is showing that if f has MG on Σi for
all i , then f has MG on G .
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Siegel sets

(I) So assume that |f (x)| ≤ c ||x ||N for x ∈ ∪iΣi , for suitable
c ,N. Pick g ∈ G and write g = γu for some u ∈ Σi and
γ ∈ Γ. Then

|f (g)| = |f (u)| ≤ c||u||N .
(II) So it suffices to check that ||u|| ≤ c ′||γu|| for all u ∈ Σi and

γ ∈ Γ, for a suitable c ′. By the useful lemma it suffices to
have an estimate ||a(x)|| ≤ c ′||γa(x)|| for x ∈ Σi .
Conjugating everything WLOG P = B. Write

a(x) =

(
tx 0
0 t−1

x

)
and γ =

(
a b
c d

)
. We need

t2
x + 1/t2

x ≤ c ′′(t2
x (a2 + c2) + (b2 + d2)/t2

x ).

(III) Since tx has a positive lower bound, we win if we can prove
that c cannot be too small, unless it is 0 (we have already
seen in the last lecture that if c = 0, then a2 = 1). This is
clear when Γ ⊂ SL2(Z), but tricky in general.
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Siegel sets

(I) Say Γ ∩
(

1 R
0 1

)
=

(
1 hZ
0 1

)
, we will show that if

γ =

(
a b
c d

)
∈ Γ satisfies |ch| < 1, then c = 0.

(II) Indeed, suppose that |ch| < 1 and define γ0 = γ and

γn+1 = γn

(
1 h
0 1

)
γ−1
n , then an amusing real analysis

exercise shows that γn →
(

1 h
0 1

)
. Since Γ is discrete,

γn =

(
1 h
0 1

)
for n large enough, and then easily c = 0.
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The first fundamental estimate

(I) We’re going to use several times the following very effective
estimate:

Theorem There is N ≥ 1 such that for all α ∈ C∞c (G )
there is cα > 0 with

|f ∗ α(x)| ≤ cα||x ||N•||f ||L1 , ∀f ∈ L1(Γ\G ), x ∈ G .

In particular f ∗ α has moderate growth for any α ∈ C∞c (G )
and f ∈ L1(Γ\G ), with uniform exponent!

(II) By the usual trick we have, with K (x , y) =
∑

γ∈Γ |α(y−1γx)|

|(f ∗ α)(x)| ≤
∫
G
|f (y)||α(y−1x)|dy =

∫
Γ\G
|f (y)|K (x , y)dy .
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The first fundamental estimate

(I) It suffices therefore to have a bound K (x , y) ≤ c ||x ||N with
c depending only on α, not on f and x . But if U = Supp(α)
(a compact set), then

K (x , y) ≤ ||α||∞
∑
γ∈Γ

1y−1γx∈U

and we saw in the previous lecture that this is bounded
uniformly by c ||x ||N .



The second fundamental estimate

(I) The key technical result of this lecture is the following rather
awful-looking statement. Fix P ∈ CP(Γ), and let N = NP

and ΓN = Γ ∩ N. Recall that for u ∈ C (ΓN\G ) the constant
term at P is

u(g) =

∫
ΓN\N

u(ng)dn.

Theorem (second fundamental estimate) Let Σ be a
Siegel set at P. For any d ≥ 1 there are D1, ...,Dk ∈ U(g)
such that for all f ∈ C∞(ΓN\G ), x ∈ Σ

|f (x)− fP(x)| ≤ ||x ||−d
k∑

i=1

|Di f |P(x).



The second fundamental estimate

(I) So f is very well approximated on Siegel sets by the constant
term of f and those of |Df | with D ∈ U(g).

(II) We leave the proof for the end of the lecture, and focus on
the applications first. Keep P and Σ as in the theorem.
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Cusp forms are rapidly decreasing

(I) Using the previous results, we are ready to prove the
fundamental:

Theorem Let Σ be a Siegel set at some P ∈ CP(Γ). Any
f ∈ Acusp(Γ) is rapidly decreasing on Σ.

(II) We saw in the last lecture that f has uniform moderate
growth, i.e. there is N such that for all D ∈ U(g) we have
|Df (g)| ≤ cD ||g ||N for all g . This allows us to bound
|Di f (g)| ≤ c ||g ||N with Di as in the second fundamental
estimate (for a given d ≥ 1). Since ΓN\N is compact, this
gives an estimate |Di f |P(x) ≤ c ||x ||N for x ∈ Σ and thus

|f (x)| ≤ c ||x ||N−d

on Σ. Since N is fixed and d is arbitrary, we are done.
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A key estimate

(I) For this lecture, the most important application of all
previous results is the following technical but useful:

Theorem For any α ∈ C∞c (G ) there is cα such that for all
f ∈ L2

cusp(Γ\G ) and all g ∈ G

||f ∗ α||∞ ≤ cα||f ||L2(Γ\G).

(II) Since Γ\G is covered by finitely many Siegel sets at cuspidal
parabolic subgroups, it is enough to prove the lemma with g
varying in a given Siegel set Σ at P ∈ CP(Γ).
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A key estimate

(I) Fix now α ∈ C∞c (G ). A simple computation shows that

(f ∗ α)P = fP ∗ α = 0.

On the other hand Di (f ∗ α) = f ∗ (Diα).

(II) Now pick N ≥ 1 so that (first fundamental estimate) for any
β ∈ C∞c (G ) we have

sup
x∈G ,f ∈L1(Γ\G)

|(f ∗ β)(x)|
||x ||N•||f ||L1

<∞. (1)
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A key estimate

(I) Combining the previous observations with the second
fundamental estimate (applied to f ∗ α and d = N) yields
D1, ...,Dk ∈ U(g) so that for all x ∈ Σ

|f ∗ α(x)| ≤ ||x ||−N
k∑

i=1

|f ∗ (Diα)|P(x) (2).

(II) Taking β = Diα in (1) yields c so that for all f ∈ L1(Γ\G )
and 1 ≤ i ≤ k we have |f ∗ (Diα)(x)| ≤ ci ||x ||N ||f ||L1 for all
x ∈ G . Since L2 ⊂ L1 is a continuous injection
(Cauchy-Schwarz coupled with

∫
Γ\G dg <∞), it follows that

there is c such that for all f ∈ L2 and all i and x ∈ G

|f ∗ (Diα)(x)| ≤ c ||x ||N ||f ||L2 .

(III) Again the compactness of ΓN\N yields an estimate
|Di f |P(x) ≤ C ||x ||N for x ∈ Σ and we are done thanks to
(2).
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GGPS in the non co-compact case

(I) Recall that C∞c (G ) acts on any object V ∈ Rep(G ) by
f .v =

∫
G f (g)g .vdg and when V is a space of functions on

G , the induced operator Tf : ϕ→ f .ϕ is simply f ∗ ϕ.

Theorem (Gelfand, Graev, Piatetski-Shapiro) For any
α ∈ C∞c (G ) the operator Tα is Hilbert-Schmidt, thus
compact on L2

cusp(Γ\G ). Hence L2
cusp(Γ\G ) has a discrete

decomposition

L2
cusp(Γ\G ) '

⊕̂
π∈Ĝ

π ⊗HomG (π, L2
cusp(Γ\G ))

with HomG (π, L2
cusp(Γ\G )) finite dimensional vector spaces.

Combining this with the Dixmier-Malliavin theorem, it
follows that Tα is actually of trace class.



GGPS in the non co-compact case

(I) The previous theorem combined with Riesz’ theorem show
that for any g ∈ Γ\G there is Kg ∈ L2

cusp with
Tα(f )(g) = 〈f ,Kg 〉 for all f ∈ L2

cusp. Moreover
||Kg ||L2 ≤ cα, thus g → Kg is bounded. The tricky thing is
that we don’t know that setting K (g , x) = Kg (x) gives a
measurable function.

(II) We prove first that Γ\G → L2
cusp, g → Kg is continuous. Fix

g and ε > 0. We need to show that

|Tα(f )(g)− Tα(f )(g ′)| ≤ ε||f ||L2

for all f ∈ L2
cusp if g ′ is close enough to g .
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GGPS in the non co-compact case

(I) It suffices for this to have a bound for each X ∈ g

||X .Tα(f )||∞ ≤ cX ||f ||L2

with cX independent of f . But
X .Tα(f ) = X .(f ∗ α) = f ∗ (X .α), so it suffices to apply the
previous theorem to Xα ∈ C∞c (G ).

(II) Since g → Kg is continuous and bounded, we can define a
continuous linear form on L2(Γ\G × Γ\G ) by

U(ϕ) :=

∫
Γ\G
〈ϕ(g , •),Kg 〉dg ,

where ϕ(g , •) : x → ϕ(g , x) (by Fubini g → ϕ(g , •) is in
L2(Γ\G , L2(Γ\G )), so U is well-defined).
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GGPS in the non co-compact case

(I) Applying Riesz we obtain some K ′ ∈ L2(Γ\G × Γ\G ) such
that U(ϕ) = 〈ϕ,K ′〉 for all ϕ. Taking ϕ(x , y) = u(x)f (y)
with u ∈ C∞c (Γ\G ) and expanding everything yields∫

Γ\G
u(g)Tα(f )(g) =

∫
Γ\G
〈u(g)f ,Kg 〉dg =

∫
Γ\G
〈ϕ(g , •),Kg 〉dg =

∫
Γ\G×Γ\G

u(g)f (y)K ′(g , y)dy =∫
Γ\G

u(g)(

∫
Γ\G

f (y)K ′(g , y)dy)dg .

(II) Varying u finally exhibits exhibits Tα as a HS operator

Tα(f )(x) =

∫
Γ\G

f (y)K ′(x , y)dy .
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Proof of the second fundamental estimate

(I) Fix P ∈ CP(Γ) and write for simplicity A := AP and
N := NP . Recall the character α = αP : A→ R>0 such that
aYa−1 = α(a)Y for Y ∈ Lie(N), and that N × A× K → G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) ∈ N, a(x) ∈ A, k(x) ∈ K .

(II) Since N ' R we can find Y ∈ Lie(N) such that
N = exp(RY ) and ΓN = exp(ZY ).

(III) Fix x ∈ Σ and consider the smooth 1-periodic map
u(t) = f (etY x).



Proof of the second fundamental estimate

(I) Fix P ∈ CP(Γ) and write for simplicity A := AP and
N := NP . Recall the character α = αP : A→ R>0 such that
aYa−1 = α(a)Y for Y ∈ Lie(N), and that N × A× K → G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) ∈ N, a(x) ∈ A, k(x) ∈ K .

(II) Since N ' R we can find Y ∈ Lie(N) such that
N = exp(RY ) and ΓN = exp(ZY ).

(III) Fix x ∈ Σ and consider the smooth 1-periodic map
u(t) = f (etY x).



Proof of the second fundamental estimate

(I) Fix P ∈ CP(Γ) and write for simplicity A := AP and
N := NP . Recall the character α = αP : A→ R>0 such that
aYa−1 = α(a)Y for Y ∈ Lie(N), and that N × A× K → G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) ∈ N, a(x) ∈ A, k(x) ∈ K .

(II) Since N ' R we can find Y ∈ Lie(N) such that
N = exp(RY ) and ΓN = exp(ZY ).

(III) Fix x ∈ Σ and consider the smooth 1-periodic map
u(t) = f (etY x).



Proof of the second fundamental estimate

(I) Note that f (x) = u(0) and

fP(x) =

∫
ΓN\N

f (nx)dn =

∫
Z\R

f (etY x)dt =

∫ 1

0
u(t)dt.

(II) We claim that

|u(0)−
∫ 1

0
u(t)dt| ≤

∫ 1

0
|u(d)(t)|dt.

(III) Replacing u by u− u(0), WLOG u(0) = 0, so u(1) = 0. Now
use repeated integrations by parts to get

|
∫ 1

0
u(t)dt| = | ±

∫ 1

0

td

d!
u(d)(t)dt| ≤ 1

d!

∫ 1

0
|u(d)(t)|dt.
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Proof of the second fundamental estimate

(I) Next, we compute

u′(t) =
d

du
|u=0f (etY xx−1euY x) =

d

du
|u=0f (etY xeu(x−1Yx)) = ((x−1Yx).f )(etY x)

and iterating, we obtain u(d)(t) = (Dx .f )(etY x), where
Dx = (x−1Yx)d ∈ U(g).

(II) By the very useful lemma on Siegel sets we can write
x = a(x)y(x), with y(x) in a compact set, and by definition
of α we obtain

Dx = α(a(x))−d(y(x)−1Yy(x))d .
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Proof of the second fundamental estimate
(I) Take a basis Di (1 ≤ i ≤ k) of the subspace of U(g) spanned

by all X1...Xd with Xi ∈ g. Then

(y(x)−1Yy(x))d =
k∑

i=1

ai (y(x))Di ,

with ai (y(x)) bounded (by continuity) as x varies in Σ.

(II) Hence there is c such that for all f and x ∈ Σ

|(Dx .f )(etY x)| ≤ cα(a(x))−d
k∑

i=1

|Di .f (etY x)|.

Putting everything together we get

|(f − fP)(x)| ≤ cα(a(x))−d
k∑

i=1

∫
ΓN\N

|Di .f (nx)|dn.

(III) We conclude recalling that α(a(x)) is approximately ||x ||2 on
Σ, and ||x || ≥ 1 for all x .



Proof of the second fundamental estimate
(I) Take a basis Di (1 ≤ i ≤ k) of the subspace of U(g) spanned

by all X1...Xd with Xi ∈ g. Then

(y(x)−1Yy(x))d =
k∑

i=1

ai (y(x))Di ,

with ai (y(x)) bounded (by continuity) as x varies in Σ.
(II) Hence there is c such that for all f and x ∈ Σ

|(Dx .f )(etY x)| ≤ cα(a(x))−d
k∑

i=1

|Di .f (etY x)|.

Putting everything together we get

|(f − fP)(x)| ≤ cα(a(x))−d
k∑

i=1

∫
ΓN\N

|Di .f (nx)|dn.

(III) We conclude recalling that α(a(x)) is approximately ||x ||2 on
Σ, and ||x || ≥ 1 for all x .



Proof of the second fundamental estimate
(I) Take a basis Di (1 ≤ i ≤ k) of the subspace of U(g) spanned

by all X1...Xd with Xi ∈ g. Then

(y(x)−1Yy(x))d =
k∑

i=1

ai (y(x))Di ,

with ai (y(x)) bounded (by continuity) as x varies in Σ.
(II) Hence there is c such that for all f and x ∈ Σ

|(Dx .f )(etY x)| ≤ cα(a(x))−d
k∑

i=1

|Di .f (etY x)|.

Putting everything together we get

|(f − fP)(x)| ≤ cα(a(x))−d
k∑

i=1

∫
ΓN\N

|Di .f (nx)|dn.

(III) We conclude recalling that α(a(x)) is approximately ||x ||2 on
Σ, and ||x || ≥ 1 for all x .



Problem set

(I) Γ will always be a lattice in G = SL2(R).

(II) Let Σi be Siegel sets at a set of representatives Pi of
Γ\C (Γ), such that Γ(∪iΣi ) = G . Let f ∈ A(Γ) be an
automorphic form such that fPi

∈ L2(Σi ) for all i . Prove that
f ∈ L2(Γ\G ).

(III) Prove that Acusp(Γ) ⊂ L2(Γ\G ).
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