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Goal

(I) The goal of this very technical lecture is to prove that
L2,:,(T\G) has a discrete decomposition for any lattice I" in
G = SL,(R), and that cuspidal automorphic forms are

rapidly decreasing near cusps.



Goal

(I) The goal of this very technical lecture is to prove that
L2,:,(T\G) has a discrete decomposition for any lattice I" in

G = SL,(R), and that cuspidal automorphic forms are
rapidly decreasing near cusps.

(I1) This requires a very careful study of growth conditions on
N\ G, and the key ingredient is finding reasonable
fundamental domains, or approximations of such things, for
the action of I on 7.



Fundamental domains

(I) If a group G acts on a topological space X, a fundamental
domain for G acting on X is an open subset Q C X such
that X = Uge(;g.ﬁ and the various translates g.Q are
pairwise disjoint. The standard example is the following
classical result (cf. any book on modular forms for the proof)

Theorem (Gauss) The set
F ={z € C||z| > 1,|Re(z)| < 1/2} is a fundamental
domain for the action of SLLy(Z) on 7.

One easily checks that .# has finite (hyperbolic) area, and
this implies that SLy(Z) is indeed a lattice in G (something
we never really checked before!).



Fundamental domains

(I) As an application, let's consider a finite index subgroup I in
SLo(Z) and f € Mi(T). Then an immediate calculation
shows that

pf: H =R, z— ]f(z)|yk/2
is [-invariant, more precisely ¢¢, ,(z) = f(g.z) for g € G.
We claim that ¢r is bounded when f € S, (T).



Fundamental domains

(I) As an application, let's consider a finite index subgroup I in
SLo(Z) and f € Mi(T). Then an immediate calculation
shows that

pf: H =R, z— ]f(z)|yk/2
is [-invariant, more precisely ¢¢, ,(z) = f(g.z) for g € G.
We claim that ¢r is bounded when f € S, (T).

(I1) Indeed, write SLo(Z) = ]_[f-;l [y and D = Z, so that
H = Ui Uyer 77iD. Thus it suffices to check that ¢y, is
bounded on D for all /.



Fundamental domains

(I) But fj := f|xvi € Sk(fyi_lrfy,-) and the g-expansion at oo
shows that fi(x + iy) = O(e~<) for some ¢ > 0, as y — o0,
uniformly in z = x + iy € D. Thus ¢ (z) tends to 0 as
z — 00 in D, so we are done.

Theorem (Hecke's bound) Let f(z) = > n>0 ap,e?im™nz/h pe
the g-expansion at oo of f € Si(I'). Then a, = O(n*/?),
more precisely

> lan* = 0(x¥), x — oc.

n<x



Fundamental domains

(I) The proof is very simple: write |¢f(z)| < C for all z, so
|f(x 4 iy)| < Cy=k/2. Plancherel's formula yields (for a
suitable constant c)

h
3" [apf2e 47/t c/ 1F(x + iy) Pax < 'y *.
0

n>1

Take y =1/N to get > la,|? < "Nk,

Theorem We have So(I') = 0 and Mp(I") = C.
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Fundamental domains

The proof is very simple: write |¢f(z)] < C for all z, so
|f(x 4 iy)| < Cy=k/2. Plancherel's formula yields (for a
suitable constant c)

h
Sl — ¢ [ jf(xo+ i) <y
0

n>1

Take y =1/N to get > la,|? < "Nk,

Theorem We have So(I') = 0 and Mp(I") = C.

If we use that X(I') is a compact Riemann surface, this is
clear. Without this input, note that for f € Sp(I') the
function ¢f = |f| is bounded and tends to 0 at oo, thus has
a maximum on %#. By the maximum principle f is constant
and since f vanishes at oo, f = 0. Actually the same
argument works even if we only assume that« € My(D).



Siegel sets

(I) Instead of working with fundamental domains, for
automorphic needs Siegel sets are better behaved. These
control the geometry at the cusps of X(I').
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(I) Instead of working with fundamental domains, for
automorphic needs Siegel sets are better behaved. These
control the geometry at the cusps of X(I').

(I1) Pick z € 0 and let P = £ApNp = G, be the associated
parabolic of G. The action of Ap on Lie(Np) defines a
character a = ap : Ap — Rsg, thus aYa™! = a(a)Y for
a€ Ap and Y € Lie(Np). If P = B is the standard Borel

subgroup, then a((é t01>) =t2 If t >0, let

Ap’t = {a € Ap‘ ap(a) > t}.
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Siegel sets

Instead of working with fundamental domains, for
automorphic needs Siegel sets are better behaved. These
control the geometry at the cusps of X(I').

Pick z € 0.9 and let P = =ApNp = G, be the associated
parabolic of G. The action of Ap on Lie(Np) defines a
character a = ap : Ap — Rsg, thus aYa™! = a(a)Y for
a€ Ap and Y € Lie(Np). If P = B is the standard Borel

subgroup, then a((é t01>) =t2 If t >0, let

Ap’t = {a € Ap‘ ap(a) > t}.
A Siegel set at P is a set of the form
Y = (JJAPJK C G

for some t > 0 and some compact set w C Np. The image
of X in # ~ G/K is called a Siegel set at z.



Siegel sets

(I) Let us make a few useful remarks. First, since
Np x Ap x K — G is a homeomorphism, any compact
subset of G is contained in some Siegel set at P.
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associated Siegel set at z is

(I1) Next, if z=o00 and w = ( ) with ¢ > 0, the

Y={x+iyed||x| <cy>t}



Siegel sets

(I) Let us make a few useful remarks. First, since
Np x Ap x K — G is a homeomorphism, any compact
subset of G is contained in some Siegel set at P.

1 [_C7 C]
0 1
associated Siegel set at z is

(I1) Next, if z=o00 and w = ( ) with ¢ > 0, the

Y={x+iyed||x| <cy>t}

(IIT) If k € K and X is a Siegel set for P, with fixed point
z € O then k.X is a Siegel set for kPk~!, with fixed point
k.z, so we can always reduce to the previous situation.



Siegel sets

(I) Let ze C(I') and 7 : 2 U C(I') — X(I') the natural
projection. Using the previous remarks, one easily checks
that sets of the form w({z} UX) form a basis of
neighborhoods of 7(z) in X(I'), when X varies among Siegel
sets at z.
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Siegel sets

Let z€ C(IN) and 7 : 57 U C(I') — X(I') the natural
projection. Using the previous remarks, one easily checks
that sets of the form w({z} UX) form a basis of
neighborhoods of 7(z) in X(I'), when X varies among Siegel
sets at z.

Since I is a lattice in G, by Siegel's theorem '\CP(I') is
finite. Choose a set of representatives P4, ..., P, for this set.

Theorem There are Siegel sets ¥; at P; such that
G =T (U_,Z)).



Siegel sets

(I) Let ze C(I') and 7 : 2 U C(I') — X(I') the natural
projection. Using the previous remarks, one easily checks
that sets of the form w({z} UX) form a basis of
neighborhoods of 7(z) in X(I'), when X varies among Siegel
sets at z.

(I1) Since I is a lattice in G, by Siegel's theorem '\ CP(T") is
finite. Choose a set of representatives P4, ..., P, for this set.

Theorem There are Siegel sets ¥; at P; such that
G =T (U_,Z)).

(I11) The proof follows easily from the compactness of X(I') and
the previous geometric remarks.



Siegel sets

(I) We will constantly use the following simple but useful result.
Fix a Siegel set ¥ at some parabolic P, and write
x = n(x)a(x)k(x) with respect to the Iwasawa
decomposition Np x Ap x K ~ G.

Lemma As x varies in ¥, a(x)"1x stays in a compact set

and ||x||?> behaves like ap(a(x)), i.e. there are constants
c1, ¢ > 0 such that for all x € &

P
1

—ap(a(x)) ~

(I1) By conjugating, WLOG P = B, so that «( <(t) 0 )) — 2



Siegel sets



Siegel sets

(1) Write a(x) = (% 0 ) Then

t !

a(x)n(x)a(x) = <(1) “Xf 2) if ne = <(1) ”1X>

(I1) Since uy stays in a compact and t, is bounded from below
on X, this gives the first part. For the second, by the first
part ||x|| behaves like ||a(x)]||, so it suffices to check that
||a(x)|| behaves like ty, which again follows from the fact
that t is bounded from below on ¥ by definition.



Siegel sets

(I) If P e CP(I') and X is a Siegel set at P, we say that
f : ¥ — C is moderate growth(resp rapidly decreasing) if
there exists d > 1 (resp. for all integers d) such that
sup,es (a(x))9|f(x)| < oco. By the previous lemma, one
could replace a(a(x)) with ||x|| and get equivalent
definitions.
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Siegel sets

If P € CP(T') and X is a Siegel set at P, we say that

f : ¥ — C is moderate growth(resp rapidly decreasing) if
there exists d > 1 (resp. for all integers d) such that
sup,es (a(x))9|f(x)| < oco. By the previous lemma, one
could replace a(a(x)) with ||x|| and get equivalent
definitions.

The following result reduces many global problems to
problems at individual cusps of X(I'). The proof is slightly
tricky.

Theorem Let Xq,...,X, be Siegel sets such that
N(UX;) = G. A function f on '\G has moderate growth on
G if and only if f has moderate growth on each ¥ ;.

The only delicate part is showing that if £ has MG on X¥; for
all i, then f has MG on G.



Siegel sets

(1) So assume that |f(x)| < c||x||N for x € U;%;, for suitable
¢, N. Pick g € G and write g = ~yu for some u € ¥; and
v €Tl. Then

f(g)l = If(u)] < cllull".

(I1) So it suffices to check that ||u|| < ¢||yul| for all u € ¥; and
~ €T, for a suitable ¢’. By the useful lemma it suffices to
have an estimate ||a(x)|| < c||ya(x)|| for x € X;.
Conjugating everything WLOG P = B. Write

a(x) = <t6< t91> and v = <i 2) We need

2+ 1/t2 < "(t2(a* + c2) + (b* + d?)/t2).



Siegel sets

(1) So assume that |f(x)| < c||x||N for x € U;%;, for suitable
¢, N. Pick g € G and write g = ~yu for some u € ¥; and
v €T. Then
f(g)l = If(u)] < cllull".

(I1) So it suffices to check that ||u|| < ¢||yul| for all u € ¥; and
~ €T, for a suitable ¢’. By the useful lemma it suffices to
have an estimate ||a(x)|| < c||ya(x)|| for x € X;.
Conjugating everything WLOG P = B. Write

a(x) = <t6< t91> and v = <i 2) We need

2+ 1/t2 < "(t2(a* + c2) + (b* + d?)/t2).

(I11) Since ty has a positive lower bound, we win if we can prove
that ¢ cannot be too small, unless it is 0 (we have already
seen in the last lecture that if ¢ = 0, then a% = 1). Thisis
clear when ' C SILy(Z), but tricky in general.



Siegel sets

1 R 1 hzZ . .
(I) Say 'n <O 1> = (0 1 ) we will show that if

v = (i 2) € I satisfies |ch| < 1, then ¢ = 0.



Siegel sets

1 R 1 hzZ . .
(1) Say ' (O 1> = (0 1 ) we will show that if

v = <a b> € I satisfies |ch| < 1, then ¢ = 0.
c d
(I1) Indeed, suppose that |ch| < 1 and define vo = and
Yni1l = Y ((1) ,17> 77 L, then an amusing real analysis
. 1 h . .
exercise shows that v, — 0 1) Since I is discrete,

Vn = ((1) I17> for n large enough, and then easily ¢ = 0.



The first fundamental estimate

(I) We're going to use several times the following very effective
estimate:

Theorem There is N > 1 such that for all & € C2°(G)
there is ¢, > 0 with

If % a(x)| < cal|X[|Ne||F]] 11, VF € LX(T\G),x € G.

In particular f * & has moderate growth for any a € C2°(G)
and f € L}(I'\G), with uniform exponent!



The first fundamental estimate

(I) We're going to use several times the following very effective
estimate:

Theorem There is N > 1 such that for all & € C2°(G)
there is ¢, > 0 with

|f % a(x)| < callx|[Ve|[f]|2, VF € LYT\G),x € G.
In particular f * & has moderate growth for any a € C2°(G)

and f € L}(I'\G), with uniform exponent!
(I1) By the usual trick we have, with K(x,y) =>_. r la(y ~1yx)|

(F % )(x)] < /G F(y)laly1x)ldy = /r IRy



The first fundamental estimate

(1) It suffices therefore to have a bound K(x,y) < c||x||N with
¢ depending only on «, not on f and x. But if U = Supp(«)
(a compact set), then

K(x,y) < llalleo Z 1y*1'yX€U
yel

and we saw in the previous lecture that this is bounded
uniformly by c||x||V.



The second fundamental estimate

(I) The key technical result of this lecture is the following rather
awful-looking statement. Fix P € CP(I'), and let N = Np
and 'y =T N N. Recall that for u € C(I'y\G) the constant

term at P is
ug)= [ ulng)dn
rv\N

Theorem (second fundamental estimate) Let X be a
Siegel set at P. For any d > 1 there are Dy, ..., D € U(g)
such that for all f € C®°(T'y\G), x €

k
|F(x) = fp(x)] < IIxII79 D IDif|p(x).

i=1



The second fundamental estimate

(I) So f is very well approximated on Siegel sets by the constant
term of f and those of |Df| with D € U(g).



The second fundamental estimate

(I) So f is very well approximated on Siegel sets by the constant
term of f and those of |Df| with D € U(g).

(I1) We leave the proof for the end of the lecture, and focus on
the applications first. Keep P and X as in the theorem.



Cusp forms are rapidly decreasing

(I) Using the previous results, we are ready to prove the
fundamental:

Theorem Let ¥ be a Siegel set at some P € CP(I'). Any
f € Acusp() is rapidly decreasing on X.
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Cusp forms are rapidly decreasing

Using the previous results, we are ready to prove the
fundamental:

Theorem Let ¥ be a Siegel set at some P € CP(I'). Any
f € Acusp() is rapidly decreasing on X.

We saw in the last lecture that f has uniform moderate
growth, i.e. there is N such that for all D € U(g) we have
|Df(g)| < cpl|g]||V for all g. This allows us to bound
|D;f(g)| < cl||g||N with D; as in the second fundamental
estimate (for a given d > 1). Since I'y\N is compact, this
gives an estimate |D;f|p(x) < c||x||N for x € ¥ and thus

()] < cllx]["9

on X. Since N is fixed and d is arbitrary, we are done.



A key estimate

(I) For this lecture, the most important application of all
previous results is the following technical but useful:

Theorem For any v € C2°(G) there is ¢, such that for all
fel?, (M\G)andallgec G

cusp

[f * alloo < callfllz(r\6)-



A key estimate

(I) For this lecture, the most important application of all
previous results is the following technical but useful:

Theorem For any v € C2°(G) there is ¢, such that for all
fel?, (M\G)andallgec G

cusp

If * ol < callflli2r\6)-

(I1) Since I'\G is covered by finitely many Siegel sets at cuspidal
parabolic subgroups, it is enough to prove the lemma with g
varying in a given Siegel set  at P € CP(I).



A key estimate

(I) Fix now a € C°(G). A simple computation shows that
(fFxa)p="fp*xa=0.

On the other hand D;(f * a) = f % (D;«).



A key estimate

(I) Fix now a € C°(G). A simple computation shows that
(fFxa)p="fp*xa=0.

On the other hand D;(f * a) = f % (D;«).

(I) Now pick N > 1 so that (first fundamental estimate) for any
B e C(G) we have

w0

< oo. (1)
xeG reri(n\6) |IXIINVel| ]



A key estimate

(I) Combining the previous observations with the second
fundamental estimate (applied to f * @ and d = N) yields
D1, ..., Dk € U(g) so that for all x € X

k
|+ a(x)] < [IxII7" Y If * (Dia)lp(x) (2)-

i=1



A key estimate

(I) Combining the previous observations with the second
fundamental estimate (applied to f * @ and d = N) yields
D1, ..., Dk € U(g) so that for all x € X

k
|+ a(x)| < |IxI[7" Y IF * (Dia)lp(x) (2)-
i=1
(11) Taking 8 = Dja in (1) yields c so that for all f € L}(I'\G)
and 1 < i < k we have |f x (D;a)(x)| < ci||x||M||f]|. for all
x € G. Since L2 C L' is a continuous injection
(Cauchy-Schwarz coupled with fr\G dg < o0), it follows that

there is ¢ such that forall f e L2 and all i and x € G
| (Dia) ()] < cllx||V]|F]] 2.



A key estimate

(I) Combining the previous observations with the second
fundamental estimate (applied to f * @ and d = N) yields
D1, ..., Dk € U(g) so that for all x € X

k
|+ a(x)| < |IxI[7" Y IF * (Dia)lp(x) (2)-
i=1
(11) Taking 8 = Dja in (1) yields c so that for all f € L}(I'\G)
and 1 < i < k we have |f x (D;a)(x)| < ci||x||M||f]|. for all
x € G. Since L2 C L' is a continuous injection
(Cauchy-Schwarz coupled with fr\G dg < o0), it follows that

there is ¢ such that forall f e L2 and all i and x € G
| (Dia) ()] < cllx||V]|F]] 2.

(I11) Again the compactness of 'y \N yields an estimate
|Dif|p(x) < C||x||N for x € & and we are done thanks to

(2).



GGPS in the non co-compact case

(I) Recall that C2°(G) acts on any object V € Rep(G) by
f.v= [, f(g)g.vdg and when V is a space of functions on
G, the induced operator T¢ : ¢ — f. is simply f * .

Theorem (Gelfand, Graev, Piatetski-Shapiro) For any
a € C°(G) the operator T, is Hilbert-Schmidt, thus
compact on L2, (M\G). Hence L2, (T\G) has a discrete
decomposition

—

Lup(NG) = @) _ .7 ® Homg(m, 2, (1))
with Homg(, L2, (T'\ G)) finite dimensional vector spaces.

Combining this with the Dixmier-Malliavin theorem, it
follows that T, is actually of trace class.



GGPS in the non co-compact case

(I) The previous theorem combined with Riesz" theorem show
that for any g € M'\G there is K; € L2, with
To(f)(g) = (f,Kg) for all f € L2,,. Moreover
||Kgl|(2 < ca, thus g = Kg is bounded. The tricky thing is
that we don't know that setting K (g, x) = Kg(x) gives a

measurable function.



GGPS in the non co-compact case

(I) The previous theorem combined with Riesz" theorem show
that for any g € I'\G there is K, € L2, with

cusp
To(f)(g) = (f,Kg) for all f € L2,,. Moreover
||Kg||12 < Ca, thus g — Kg is bounded. The tricky thing is
that we don't know that setting K (g, x) = Kg(x) gives a

measurable function.

(11) We prove first that T\G — L2, ,g — Kg is continuous. Fix

cusp?

g and € > 0. We need to show that

| Ta(f)(8) = Ta(F)(&")] < ellfll2

for all f € L2 if g’ is close enough to g.

cusp



GGPS in the non co-compact case

(I) It suffices for this to have a bound for each X € g

1X.- Ta(F)lloo < exl|fl]12

with cx independent of f. But
X.To(f) = X(f xa) = f % (X.«), so it suffices to apply the
previous theorem to Xa € C2°(G).
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GGPS in the non co-compact case

It suffices for this to have a bound for each X € g

[1X-Ta(F)lloo < ex]f]l12
with cx independent of f. But

X.To(f) = X(f xa) = f % (X.«), so it suffices to apply the
previous theorem to Xa € C2°(G).

Since g — Kj is continuous and bounded, we can define a
continuous linear form on L?(I'\G x I'\G) by

U(p) = /r (ple ) Ky

where p(g,.) : x = (g, x) (by Fubini g — ¢(g,) is in
L2(T'\ G, L2(T\G)), so U is well-defined).



GGPS in the non co-compact case

(1) Applying Riesz we obtain some K’ € [2(I'\G x I'\G) such

that U(p) = (p, K') for all . Taking ¢(x,y) = u(x)f(y)
with u € C2°(M'\G) and expanding everything yields

/u@nm@z/«@m@mz
NG neG

/<m%w@@=/ u(8)F(y)K (2, y)dy =
neG M\GxMN\G

/ U(g)(/ f(y)K'(g,y)dy)dg.
neG neG



GGPS in the non co-compact case

(1) Applying Riesz we obtain some K’ € [2(I'\G x I'\G) such

that U(p) = (p, K') for all . Taking ¢(x,y) = u(x)f(y)
with u € C2°(M'\G) and expanding everything yields

/ u(g) Tu(F)(&) = / (u(g)F, Kg)dg =
ne

ne

/ (0(8: ), Kg) g = / u(8)F(y)K (2, y)dy =
neG M\GxMN\G

/ U(g)(/ f(y)K'(g,y)dy)dg.
neG neG

(I1) Varying u finally exhibits exhibits T, as a HS operator

To(F)(x) = /r L ORT)ay



Proof of the second fundamental estimate

(I) Fix P € CP(I') and write for simplicity A := Ap and
N := Np. Recall the character a« = ap : A — R such that
aYa—l = qa(a)Y for Y € Lie(N), and that N x Ax K — G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) € N,a(x) € A k(x) € K.
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aYa—l = qa(a)Y for Y € Lie(N), and that N x Ax K — G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) € N,a(x) € A k(x) € K.

(I1) Since N ~ R we can find Y € Lie(N) such that
N = exp(RY) and 'y = exp(ZY).



Proof of the second fundamental estimate

(I) Fix P € CP(I') and write for simplicity A := Ap and
N := Np. Recall the character a« = ap : A — R such that
aYa—l = qa(a)Y for Y € Lie(N), and that N x Ax K — G
is a diffeomorphism, so we can write x = n(x)a(x)k(x) with
n(x) € N,a(x) € A k(x) € K.

(I1) Since N ~ R we can find Y € Lie(N) such that
N = exp(RY) and 'y = exp(ZY).

(II1) Fix x € X and consider the smooth 1-periodic map
u(t) = f(et¥x).



Proof of the second fundamental estimate

(I) Note that f(x) = u(0) and



Proof of the second fundamental estimate
(I) Note that f(x) = u(0) and

1
= nx)an = tYX = u .
fp(x)—/rN\Nf( )d /Z\Rf(e )dt /O (t)dt

(1) We claim that

u(0)—/0 u(t)dt§/0 ) ()] dt.



Proof of the second fundamental estimate
(I) Note that f(x) = u(0) and

1
= nx)dan = tYX = u .
fp(x)—/rN\Nf( )d /Z\Rf(e \dt /O (£)dt

(1) We claim that

u(0)—/O u(t)dt§/0 ) ()] dt.

(I11) Replacing u by u— u(0), WLOG u(0) =0, so u(1) =0. Now
use repeated integrations by parts to get

\/ t)dt] = |+ A —u dt"dl/ (D) ()| dt.



Proof of the second fundamental estimate
(1) Next, we compute
U (t) = —|u of (e xx"te!Yx) =

2 imof(e x0T Y) = (1 Yx). ) %)

and iterating, we obtain u(?(t) = (Dy.f)(etY x), where
Dy = (x71Yx)4 € U(g).



Proof of the second fundamental estimate

(1) Next, we compute

U (t) = —|u of (e xx"te!Yx) =

2 imof(e x0T Y) = (1 Yx). ) %)

and iterating, we obtain u(?(t) = (Dy.f)(etY x), where

Dy = (x71Yx)4 € U(g).

(I1) By the very useful lemma on Siegel sets we can write
x = a(x)y(x), with y(x) in a compact set, and by definition
of a we obtain

Dx = a(a(x))~(y(x) " Yy (x))“.



Proof of the second fundamental estimate

(I) Take a basis D; (1 < i < k) of the subspace of U(g) spanned
by all Xj...Xg with X; € g. Then

k
)T V() =D aily(x))D,
i=1

with a;(y(x)) bounded (by continuity) as x varies in ¥.
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Proof of the second fundamental estimate

(I) Take a basis D; (1 < i < k) of the subspace of U(g) spanned
by all Xj...Xg with X; € g. Then

k
()T Yy (x)? =) aily(x))D
i=1

with a;(y(x)) bounded (by continuity) as x varies in ¥.
(I1) Hence there is ¢ such that for all f and x € &

|(Dy.f)(etY x)| < caf( dZ|D f(e
Putting everything together we get
(F — fp)(x)] < ca(a( dZ/ |D;.f(nx)|dn.
rv\N

(1) We conclude recalling that a(a(x)) is approximately ||x||? on
Y, and ||x|| > 1 for all x.
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Problem set

(1) T will always be a lattice in G = SLo(R).

(I1) Let X; be Siegel sets at a set of representatives P; of
M\ C(I), such that M(U;X;) = G. Let f € A(I') be an
automorphic form such that fp, € L?(¥;) for all i. Prove that
f e L2(N\G).

(111) Prove that Acusp(F) C L2(M\G).



